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Weak Induction

To prove a proposition P(n) holds for ∀n ≥ a by induction, we must:

Base Case: P(a) is true

Inductive Step: (∀k ≥ a)(P(k) =⇒ P(k + 1)) is true

The assumption that P(k) is true is our Inductive Hypothesis, and
generally, to prove P(k + 1) we only need to assume that the prior result
holds, namely P(k).

Assuming only the prior result holds, P(k), in proving P(k + 1) is called
weak induction.
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Strong Induction

In strong induction, we allow for a stronger induction hypothesis. To prove
that P(n) is true for all n ≥ a

Base Case: P(a) is true.

Inductive Step:
(∀k ≥ a)[P(a) ∧ P(a+ 1) ∧ . . . ∧ P(k − 1) ∧ P(k) =⇒ P(k + 1)] is true.

We get to assume the induction hypothesis is not only true for P(k), but
also true for P(a) and P(a+ 1) and . . . P(k), all values between a and k .
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What makes this so strong?

The inductive step requires prove the following implication.

P(a) ∧ P(a+ 1) ∧ . . .P(k − 1) ∧ P(k) =⇒ P(k + 1)

But, recall that p → q ≡ ¬p ∨ q, so if we have

p1 ∧ p2 → q ≡ ¬(p1 ∧ p2) ∨ q

≡ ¬p1 ∨ ¬p2 ∨ q

≡ ¬p1 ∨ ¬p2 ∨ q ∨ q

≡ (¬p1 ∨ q) ∨ (¬p2 ∨ q)

≡ (p1 → q) ∨ (¬p2 → q)

Or to put it another way, to prove the larger implication, we only need to
show that any P(j) where a ≤ j ≤ k implies P(k + 1).

Prof. Adam J. Aviv (GW) Lec 08: Induction II 4 / 19



Using strong induction

Let’s revisit the following theorem we proved by contradiction, and instead
prove it with strong induction.

Theorem (Prime Divisibility)

For all integers n > 1, n is divisible by a prime.

What is the base case?

What is the inductive step and inductive hypothesis?
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Prime divisibility proof

Proof of prime divisibility
By strong induction on n, we can show:

Base Case: 2 is divisible by a prime, namely 2|2.

Inductive Step: If we assume that all integers k ≤ n are divisible by a
prime, we can show that n + 1 is divisible by a prime. There are two cases
to consider: n + 1 is prime and n + 1 is composite.
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Prime divisibility proof

Proof of prime divisibility (cont.)

Case (n + 1) is prime: If n + 1 is prime, then n + 1 divides itself, and is
thus divisible by a prime.

Case (n + 1) is composite: If n + 1 is composite, then n + 1 = ab for
some integers a and b where 1 < a < n + 1 and 1 < b < n + 1. By the
inductive hypothesis a and b must be divisible by a prime because a ≤ n
and b ≤ n.

Consider a (but the same is true for b). By the IH, there exists a prime p
such that p|a and the case assumes that a|(n + 1). By transitivity of
divisibility, if p|a and a|(n + 1) then p|(n + 1), proving this case.

Thus, every integer n > 1 is divisible by a prime.
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Existence of a prime factorization

Recall that the fundamental theorem of arithmetic says that all numbers
can be factored into a unique set of primes. There are two parts of the
proof, existence and uniqueness. Existence can be proven using strong
induction.

Theorem (Existence of a prime factorization)

For all integers n > 1, there exists a k and primes p1 < p2 < . . . < pk such
that n = p1p2 . . . pk−1pk .

What is the base case?

What do we need to show in the inductive step, and what is the inductive
hypothesis?
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Existence of prime factorization proof

Proof of existence of prime factorization.
Proof by strong induction on n.

Base Case: n = 2, the prime factorization is simply 2 as 2 is prime.

Inductive Step: Assume that for all m ≤ n there exists a prime
factorization, we must show that n+ 1 has a prime factorization. There are
two cases, n + 1 is prime or n + 1 is composite.

If n + 1 is prime, than the prime factorization is simply n + 1
If n + 1 is composite, than there exists integers r and s such that
1 < r < (n + 1) and 1 < s < (n + 1) and rs = n + 1. Both r and s
are less than n, so by the IH, we know that there exists prime
factorization for both, namely that r = p1 . . . pk and s = q1 . . . q

′
k .

The prime factorization for n + 1 is then p1 . . . pkq1 . . . qk ′ .
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Exercise

Proof the following using (strong) induction

For all integers n > 0, there exists a k ≥ 0 and odd integer `, such that
n = ` · 2k

Hint: Start by applying induction on n, and consider even and odd cases for n+ 1. You may not

need the inductive hypothesis in both cases.

Prof. Adam J. Aviv (GW) Lec 08: Induction II 10 / 19

Thinking differently about induction
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Induction is not just about numbers

Induction can be applied to any proposition for which you can work from a
base case in some well-ordered sequence.

P(0)→ P(1)→ . . .→ P(k − 1)→ P(k)→ . . .P(n)→ P(n + 1) . . .

The numbers really mean that we have an obvious path through set of
prepositions base case (P(0)) through the n’th case (P(n)) and beyond.

We can perform induction on other kinds of sequences of objects that have
this property.
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Trominos

Trominos are objects that can be drawn with 3 squares. There are exacttly
two types of trominos, straight and L-shaped.

Trominos is an example of a polyomino, a generalization of domino,
introduce by Solomn Golomb in 1954. His work (and others) led to things
like Tetris.
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Tiling with trominos

You can’t fully tile a square grid with a tromino.

But you can tile a square grid of trominos if the dimensions of the grid is a
power of 2, e.g., 2x2, 4x4,. . . , and you remove exactly one grid-square.

And you can prove it using induction!
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Induction on Tiling Trominos

Theorem
For any integer n ≥ 1, if one square is removed from a 2n × 2n grid of
squares, then it can be tiled by L-shaped trominos.

Base Case

n = 1 is a 2x2 grid.

Inductive Step

IH: 2k can be tiled
Show: 2k+1 can be tiled
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Induction on the Structure of Lists

Consider a list L of elements h, we can define a list recursively. It can take
exactly two forms: A List is . . .

is empty:

L = ∅

is a (head) element h appended to a (tail) list T :

L = h ∗ T

Example
The list containing the numbers 1-4, can be described as

1 ∗ 2 ∗ 3 ∗ 4 ∗ ∅
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The size of the list

Let’s define the |L| as the number of elements of the list, where the |∅|=0.

Theorem
For all lists L, if L = ∅, then |L| = 0, but if L = h ∗ T , then
|h ∗ T | = 1+ |T |.

This can be proven on the inductive structure of lists. Namely that lists are
either empty, ∅, or they are a head element appended to a tail list,
L = h ∗ T
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Induction on Structure

Proof.
If L = ∅, then |L| = 0 because L has no elements. The remainder of the
theorem we can proof by induction on the structure of lists.

Base Case: L = h ∗ ∅, then |L| = 1+ |∅|. The size of the ∅ is 0. So
|L| = 1, proving the case since there is 1 element in the list.

Inductive Step: Assume that if L = h ∗ T then |h ∗ T | = 1+ |T |, can we
show that if M = a ∗ b ∗ S then |a ∗ b ∗ S | = 1+ |b ∗ S |.

Let U = b ∗ S , then M = a ∗ U, and we can now apply the IH with to M,
providing us with |b ∗ S | = 1+ |U|.

Substituting back in for U = b ∗ S , we have |a ∗ b ∗ S | = 1+ |b ∗ S |,
proving our result.
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Proofs and programming

Proving the theorem is also showing that this program functions properly:

de f s i z e (L ) :
i f L i s n u l l :

r e t u r n 0
e l s e :

r e t u r n 1 + t a i l (L )
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