Lec 16:
Prob. and Counting II

Prof. Adam J. Aviv
GW
CSCI 1311 Discrete Structures I
Spring 2020

Multiplication Rule and Factorials

The multiplication rule states that we can multiply the set of possible outcomes for a series of choices to get the total number of outcomes.

Example: Assume we have four elements, $\{A, B, C, D\}$, how many different ways can they be arranged (without repetition)?

There are 4 choices for the first element, 3 for the second, 2 for the third, and then just 1 for the last.

$$
4 \cdot 3 \cdot 2 \cdot 1=4!
$$

Factorial

$$
\begin{aligned}
& \text { Definition } \\
& \text { The factorial of a number } n \text {, written } n!\text {, is } \\
& \qquad n!=n \cdot(n-1) \cdot(n-2) \cdot \ldots \cdot 2 \cdot 1 \\
& \text { And definition ally, } 0!=1 .
\end{aligned}
$$

What is

- 4 !
- 5 !
- $\frac{5!}{3!}$

Factorials and Permutations

Permutations

Definition

A permutation of a subset of objects is the number of ways those objects can be arranged in a row.

Example

If there are 6 diplomats, and 4 seats around a table, how many different permutations are there for 6 diplomats to sit at the table where two diplomats stand?

$$
6 \cdot 5 \cdot 4 \cdot 3=6!/ 2!=360
$$

6 diplomatic in the first seat, 5 can be selected for the second seat, 4 in the third, and 3 in the fourth.

Exercise

How many 4-permutations of a set of 7 ?

How many ways can you arrange 3 letters from a 26 letter alphabet?

Prove that for all integers $n \geq 2, P(n, 2)+P(n, 1)=n^{2}$

r-Permutation

Definition

An r-permutation of a set of n elements is an ordered selection of r elements take from the set of n elements. The number of r-permutations of a set of n elements is denoted as $P(n, r)$ or $n P r$, read " n permute r."

If n and r are integers and $1 \leq r \leq n$, the number of r-permutations of a set n elements is given by the formula:

$$
P(n, r)=n \cdot(n-1) \cdot(n-2) \cdot \ldots \cdot(n-r+1)
$$

or equivalently

$$
P(n, r)=\frac{n!}{(n-r)!}
$$

Addition, Difference, Unions, and Intersections of Counting/Probability

Example: PINs of multiple lengths

Suppose you want to count the number of 1-, 2-, 3-, and 4-length PINs selected from digits 0-9 without repetition?

Calculation at each length:

- 1-length: $P(10,1)=10=10$
- 2-length: $P(10,2)=10 \cdot 9=90$
- 3-length: $P(10,3)=10 \cdot 9 \cdot 8=720$
- 4-length: $P(10,4)=10 \cdot 9 \cdot 8 \cdot 7=5040$

The total PINs of these lengths is the sum, $10+90+720+5040=5860$

Exercise

Using the addition rule, how many three digit numbers 100-999 are divisible by 5 ?

Addition Rule for Disjoint Sets

Addition Rule

Suppse a finite set A equals the union of k distinct mutually disjoint subsets $A_{1}, A_{2}, \ldots, A_{k}$, Then

$$
N(A)=N\left(A_{1}\right)+N\left(A_{2}\right)+\ldots+N\left(A_{k}\right)
$$

Example: PINS of different lengths are disjoint sets. So to count them, we add up the lengths of each length.

Example: Counting PINs without repeated symbols

How many PINs of length 4 (with repetition) do not contain a repeated digit?

Consider the following:

- When there are no repetitions of digits, there are $P(10,4)=5040$ PINs
- When there are repetitions of digits, there are $10^{4}=10000$ PINs

If we subtract the number of PINs that do not have repeated digits from the total number of PINs, we are left with just the PINs that have at least on repeated digit.
$10000-5040=4060$ PINs with at least one repeated digit

The Difference Rule

The Difference Rule

If A is a finite set, and B is a subset of A, then

$$
N(A-B)=N(A)-N(B)
$$

The set of PINs with at least one repeated digits is the set-difference between the set of all PINs and the set of PINs without any repeated digits.

Complements

Probability of a Complement of an Event

If S is a finite sample space and A is an event in S, then

$$
P\left(A^{c}\right)=1-P(A)
$$

The probability of selecting a PIN with at least one 5 is the same as the complement of the probability of not selecting a PIN with no 5's.

Exercise

What is the probability of randomly selecting a 4-digit PIN (with repetitions) that contains at least one 5 ?

Counting Unions (with overlaps)

How many numbers between 1 and 1000 are divisible by 3 or 5 ?
We can calculate the number of divisible numbers for both 3 and 5

- $\lfloor 1000 / 3\rfloor=333$
- $\lfloor 1000 / 5\rfloor=200$

But we can not take the sum of the two numbers to answer the question because some numbers are divisible by BOTH 3 and 5 .

For a number to be visible by 3 and 5 , it is divisible by 15 , and $\lfloor 1000 / 15\rfloor=66$ would be counted twice. We can subtract that from the total.

Thus there are $333+200-66=467$ numbers between 1 and 1000 that are divisible by 3 or 5 .

Inclusion/Exclusion Rule

The inclusion/Exclusion rule for two or Three Sets
If A, B, and C are any finite sets, then

$$
N(A \cup B)=N(A)+N(B)-N(A \cap B)
$$

and

$$
\begin{aligned}
N(A \cup B \cup C)= & N(A)+N(B)+N(C) \\
& -N(A \cap B)-N(B \cap C)-N(A \cap C) \\
& +N(A \cap B \cap C)
\end{aligned}
$$

What is another way to define $N(A \cap B)$?

$$
N(A \cap B)=N(A)+N(B)-N(A \cup B)
$$

Combinations and Poker Hands

Probability of General Unions and Intersections

Recall that a $P(E)$, or the probability of E, is $N(E) / N(S)$, that is, the number of ways an event can occur divided by the size of the sample space.

What if we had two kinds events, A and B :

- Probability of A or B is the same as $P(A \cup B)$
- $P(A \cup B)=P(A)+P(B)-P(A \cap b)$
- Probability of A and B is the same as $P(A \cap B)$
- $P(A \cap B)=P(A)+P(B)-P(A \cup B)$

Number of Subsets of a Given Size

Consider the set, $\{A, B, C, D\}$, how many subsets of size 2 exist?

- $\{A, B\},\{A, C\},\{A, D\}$
- $\{B, C\},\{B, D\}$
- $\{C, D\}$

This is less than the ways to permute 2 items from the set, in fact half the size.

- $A B, B A, C A, A C, A D, D A$
- $B C, C B, B D, D B$
- CD, DC

Calculate the number of subsets of size 3 exist?
How does that compare to the number of permutations of size 3 ?

Combination

Definition

Let n and r be non-negative integers with $r \leq n$. An r-combination of a set of n elements is a subset of r of the n elements. We write a combination as

$$
\binom{n}{r}
$$

read " n choose r ". It is also denoted as $C(n, r)$ and $n C r$.

A combination can be computed by dividing the number of permutations by the different arrangements, or r !.

$$
\binom{n}{r}=\frac{P(n, r)}{r!}=\frac{n!}{r!(n-r)!}
$$

Poker Hands

Recall that a deck of cards has 4 suites, each with 13 cards: A, $2,3, \ldots, 10, J, Q, K . A$ poker hand is a selection of 5 cards selected at random.
How big is the sample space of poker hands?

- $N($ poker-hands $)=\binom{52}{5}=2598960$

How many poker hands contain at least a pair? Two cards that are the same?

- $P($ at least one pair $)=1-P($ no-pair $)=1-N($ no-pair $) / N$ (poker-hands)
- $N($ no-pair $)=\overbrace{\binom{13}{5}}^{\text {Choose }} 5 \underbrace{\text { cards of differnt rank }}_{\text {choose suite of each card }} \cdot\binom{4}{1} \cdot\binom{4}{1} \cdot\binom{4}{1} \cdot\binom{4}{1} \cdot\binom{4}{1}, ~=1317888$
- $P($ at least one pair $)=1-1317888 / 2598960=1-0.507=0.493=49.3 \%$

Exercise

If you flipped a coin 5 times, how many different ways can you get 3 heads?

If you flip a coin 5 times, what is the likelihood you get at least 2 head.

If you had a bucket of balls, 5 blue, 3 red, 2 green, and you selected 4 of them, what is the probability of drawing 2 blue, 2 red, and 1 green ball.

Poker Hand Exercise

How many poker hands contain four of a kind?

How many poker hand are in a full house

How many poker hands are a flush? (all the same suite?)

