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Graph Isomorphism
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Recall that pictures are malleable

The following are the same graph

We say that the two graphs are isomorphic.
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Isomorphic Graphs

Definition

Let G = {E ,V } and G
′
= {E ′,V ′} be two graphs with edges and vertices.

We say that G is isomorphic with G
′ if, and only if, there exists one-to-one

correspondences g ∶ V → V
′ and h ∶ E → E

′, where h preserves the edge
endpoints of E in E

′ based on the mapping of g .
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Exercise

Show that two graphs are isomorphic using an arrow diagram

Prof. Adam J. Aviv (GW) Lec 19: Graphs and Trees II 5 / 38

Isomorphism is an equivalence relation

Prove it!

Reflexive: A graph G is isomorphic to itself by using the identity
function for g ∶ V → V and h ∶ E → E .

Symmetric: If a graph G is isomorphic to graph G
′, then G

′ is
isomorphic to G . The premise provides that there must exists
one-to-one correspondence g and h between G and G

′. As one-to-one
correspondence functions, they must have an inverse g

−1 and h
−1

between G
′ and G which are also one-to-one correspondence functions.

Transitive: If a graph G is isomorphic to graph G
′, and G

′ is
isomorphic to G

′′, then G is isomorphic to G
′′. From the premise there

are one-to-one correspondences g and h from G to G
′, and g

′ and h
′

from G
′ to G

′′. Then the composition functions g ◦ g ′ and h ◦ h
′ are

also one-to-one correspondence functions from G to G
′′.
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Invariant of Graph Isomorphism

Definition
A property P is call an invariant for graph isomorphism if, and only if,
given any graphs G and G

′, if G has property P and G
′ is isomorphic to G ,

then G
′ has property P .

How many invariant properties can you name?
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Invariants

has n vertices
has m edges
has a vertex of degree k

has m vertices of degree k

has a circuit of length k

has a simple circuit of length k

has m simple circuits of length k

is connected
has an Euler circuit
has a Hamiltonian circuit
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Matrix Representation of Graphs
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Matrix (review)
Recall that a matrix is a 2-dimensional representation of a sequence. For
example, a n ×m matrix, A can be written as

A =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

a11 a12 . . . a1j . . . a1n
a21 a22 . . . a2j . . . a2n
⋮ ⋮ ⋮ ⋮
ai1 ai2 . . . aij . . . ain
⋮ ⋮ ⋮ ⋮

am1 am2 . . . amj . . . amn

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
The notation aij , refers to the element at the ith row and jth column.

The ith row of the matrix is [ai1 ai2 . . . ain]

The jth column of the matrix is

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

a1j
a2j
⋮

amj

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
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Directed Graphs as a Matrix

Consider the following graph, on the left.

We can write that as matrix (right) of ∣V ∣ × ∣V ∣, were each aij indicates
the number of edges from vi to vj .
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Exercise

Convert the following graph to a
matrix.

Convert the following matrix, to a
graph.

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 1 0 1 1
2 0 1 1 0
1 0 1 2 1
0 0 0 0 1
1 0 2 0 0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

Prof. Adam J. Aviv (GW) Lec 19: Graphs and Trees II 12 / 38



Un-directed graphs as matrix

We can use the same rules to represent an un-directed graph as a matrix
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Matrix Symmetry

For a directed graph, the matrix representation is symmetric, aij = aji ,

In an un-directed graph, an edge from vi to vj is also an edge from vj to vi
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Dot Product

The scaler product or dot product of a row of matrix A with a column of
matrix B, is the sum of the pairwise multiplication of each element in a row
to the column.

[ai1 ai2 . . . ain]

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

b1j
b2j
⋮
bnj

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

= ai1b1j + ai2b2j + . . . ainbnj

Note the number of elements in the row of A must equal the number of
elements in the column of B.
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Example Dot Product
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Matrix Multiplication

The multiplication of two matrices A and B is the row-by-column dot
product.

Exercise: complete the matrix multiply above.
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Graph Multiplication as way to compute walks

Consider the following graph and its matrix representation

How many walks of length 1 between each node? It’s encoded in the
matrix!

How many walks of length 2 between each node? Or circuits from v2?
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Squaring the Matrix
If we take the adjacency matric, squared. What does a value in it compute?

Look at a22. The dot product represents the number of ways to get v2 to another
vertices multiplied by the way to get back to v2
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Walks of length 2
The number of walks of length 2, from v2 and back to v2, is 6 = a

2
22.

The number of walks from v3 to v2 of length 2, is 2 = a
2
32

Go from v3 to v2 by either edge by one loop on v2. There is no way to get
from v3 to either v1 (or in reverse) in one step. So they don’t count.
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Exercise

How many circuits of length 3 exist in the following graph?

Recall that a circuit is a walk that begins and ends on the same vertex
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Tree Introduction
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Acyclic Graphs

Definition
A graph is said to be circuit-free or acyclic if, and only if, it has no circuits.

A Tree is an acyclic and connected graph. A disconnected graph that is
acyclic is called a forest.

A vertex, by itself, is a tree, so called the trivial tree
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Example of Trees
The possibility/probability tree is an example tree which we’ve already
discussed
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Leafs of the Tree

A terminal vertex, or a leaf, of a tree is a vertex that has degree one.

A vertex with degree more than one, is an internal vertex
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There must be leaves

Lemma
Any tree that has more than one vertex has at least one vertex of degree 1,
or has at least one leaf node.

Proof by algorithm for finding a leaf
1 Choose a vertex v and an edger e incident on v .
2 Continue while deg(v) > 1

▶ Choose e
′, also incident on v , and consider v ′ the endpoint of e ′

▶ Let e = e
′ and v = v

′.
We can never double back because a tree is acyclic
It must terminate!

3 v must be a leaf node.
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Visualizing the algorithm
Consider the Tree

Choose vertex v and e

Continue while deg(v) > 1 (right)

. . .

v must be a leaf node

Consider e ′ and v
′

. . . repeat

This would work, no matter the starting v
and e
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Number of edges in a tree

Theorem
For any positive integer n, any tree with n vertices has n − 1 edges.

How can we prove such a result, for all trees with n vertices? We can apply
induction on trees.

What does it mean to apply induction on trees? We consider trees with
vertices of increasing size. Our induction hypothesis allows us to assume
the property for smaller trees.
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Induction on number of vertices of a tree
The property we are trying to prove is P(n)

Any tree with n ≥ 1 vertices has n − 1 edges.

Proceed by induction on n:

Base Case: P(1) This is the trivial tree. A vertex by itself, and since there
are no other vertex, it cannot have any edges because trees are acyclic.

The number of edges is 0 = 1 − 1.
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Inductive Step (1)

P(n) ⟹ P(n + 1). If we assume that a tree n vertices have n − 1 edges (the
IH), is it true that trees with n + 1 vertices have n edges (the “to show”)?

Consider a tree with n + 1 vertices. There must be a leaf since n ≥ 1 and thus
n + 1 ≥ 2.

Find a leaf, and remove the edge and leaf vertex, giving us a tree with n edges.
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Inductive Step (2)

Because the subtree, with one leaf vertex removed and the edge that
connects it, has n edges, we can apply the inductive hypothesis that it
must have n − 1 edges.

Adding that vertex and edge back to any leaf will provide a tree that is
acyclic. The resulting tree will have n edges (one more edge) and n + 1
vertices. Proving our result.
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Graphs and Trees

Theorem
For any positive integer n, if G is a connected graph with n vertices and
n − 1 edges, then G is a tree.

This is a much stronger theorem about the relationship between graphs
and trees. First, though, we need to prove a lemma

Lemma
If G is any connected graph, C is any circuit in G , and any one of the
edges of C is removed from G , then the graph remains connected.
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Proof of Lemma (1)

In a connected graph G with a circuit C , there would be two vertices u and
v on that circuit.

If we removed an edge on that circuit, producing the subgraph G
′, is the

graph still connected?
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Proof of Lemma (2)

For the graph G to have been connected, there must exist a walk W
between u and v (and every node).

There are two cases, was the removed edge on the walk that connected u
and v or not?
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Proof of Lemma (3)

Case 1: If the removed edge is on the walk, then it is also on the circuit.
So we can go the “other way” around the circuit to connect u and v

Case 2: The removed edge is not on the walk. The graph is still connected.

This proves our result.
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Proof of Theorem (1)

We must show that for any connected graph G with n vertices and n − 1
edges, G is a tree.

Proof by Contradiction: Assume that G is not acyclic (thus has circuits
and is not a tree).

Our goal is to show that this cannot be the case by deriving a contradiction,
and thus the graph G is a tree since its acyclic and connected.
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Proof of Theorem (2)

Assuming G has circuits. We can apply the lemma, to remove an edge
from the circuit producing the connected sub-graph G

′.

If G ′ has a circuit, we continue removing an edge from the sub-graph until
we eventually reach a connected, acyclic graph G

′′ — that’s a tree!

Since G
′′ has n vertices (we only removed edges), then G

′′ has n − 1 edges.
Then G and G

′′ have the same number of edges (that was part of the
premise of the theorem)

BUT! To have reached G
′′ we had to remove edges from circuits, but G ′′

and G have the same number of edges — we didn’t remove any edges to
reach G

′′.

It must be the case that G didn’t have cycles, thus it is acyclic and
connected. It’s a tree.

Prof. Adam J. Aviv (GW) Lec 19: Graphs and Trees II 37 / 38

Exercise

Is every graph with n vertices and n − 1 edges a tree? Provide a counter
example.

Prove that if you remove an interior vertex from a tree (there are two or
more edges incident on the vertex), you get a forest (a graph containing
two or more trees).
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