
Lec 20:
Graphs and Trees III

Prof. Adam J. Aviv

GW

CSCI 1311 Discrete Structures I
Spring 2020

Prof. Adam J. Aviv (GW) Lec 20: Graphs and Trees III 1 / 40

Rooted Trees

Prof. Adam J. Aviv (GW) Lec 20: Graphs and Trees III 2 / 40

Rooted Tree

In a rooted tree there is one vertex that is distinguished from the other, the
root. From the root vertex, all other vertices descended.

Since a Tree is acyclic, distinguishing one vertex as the root provides a way
to distinguish and classify other vertices in the tree. It is also an important
structure for organizing data with hierarchical relationships.

Prof. Adam J. Aviv (GW) Lec 20: Graphs and Trees III 3 / 40

A tree is like a family

a is the root of the tree, all
vertices descend from the root
a is the parent of b and c

b and c are siblings
c is the parent of d and e

d and e are siblings
b, c , d , e are descendants of a
d and e are descendants of c
b, d , and e has no descendants
and thus are leafs

Prof. Adam J. Aviv (GW) Lec 20: Graphs and Trees III 4 / 40



Roots, Sub-Roots, Internal and Leaf vertices

Root of the tree has no parents
An internal vertex is one that
has a parent and a child
A leaf vertex has a parent but
no children
An internal vertex can form the
sub-root of a sub-tree

Prof. Adam J. Aviv (GW) Lec 20: Graphs and Trees III 5 / 40

Levels and Height of a tree

The level of the tree describes how many descendants away the given
vertex is from the root.

The root is at level 0, and each level counts down from there. The height
of a tree is the maximum level of vertices in the tree. The tree above has
height 3.

Prof. Adam J. Aviv (GW) Lec 20: Graphs and Trees III 6 / 40

Branching Factor

The branching factor is the number of children for each parent. If a vertex
has a branching factor of 0, it is a leaf node.

The branching factor of the tree is the maximum number of chidlren for
each parent. The branching factor of the tree above is 3.

Prof. Adam J. Aviv (GW) Lec 20: Graphs and Trees III 7 / 40

Exercise

Name all internal vertices.
Name all leaf vertices.
What are the siblings of f ?
What are the descendants of d?
What is the level of j?
What is the height of the tree?
What is the height of the
sub-tree where b is the root?
What is the height of the
sub-tree where e is the root?
What is the branching factor of
the tree?

Prof. Adam J. Aviv (GW) Lec 20: Graphs and Trees III 8 / 40



Binary Trees

Prof. Adam J. Aviv (GW) Lec 20: Graphs and Trees III 9 / 40

Binary Trees
A Binary Tree is a tree where the branching factor is exactly 2. Ever
internal vertex can have either a left child (or left sub-tree) or a right child
(or right sub-tree)

Prof. Adam J. Aviv (GW) Lec 20: Graphs and Trees III 10 / 40

A Full Binary Tree

A full binary tree is a binary tree where every level of the tree contains the
maximal number of vertices, or 0 vertices. Or, put another way, every
parent (internal vertex) has exactly 2 children.

Prof. Adam J. Aviv (GW) Lec 20: Graphs and Trees III 11 / 40

Number of Vertices in Full Binary Tree
If a tree has height h, how many vertices must be in the tree if it is a full
binary tree? That is calculate N(h), number of vertices for a full tree of
height h, where h ≥ 0.

N(h) =
h

∑
`=0

2` =
1 − 2h+1

1 − 2 = 2h+1
− 1

Prof. Adam J. Aviv (GW) Lec 20: Graphs and Trees III 12 / 40



Exercise

Prove that if a binary tree is not full and has a h, then N(h) ≤ 2h+1.

Prof. Adam J. Aviv (GW) Lec 20: Graphs and Trees III 13 / 40

Induction on Binary Trees

We can apply induction to prove a property of binary trees, by either
inducting on the number of vertices (n) or height (h):

Number of vertices in the tree n:
▶ IH provides the property is true for all trees with n vertices, you must

show it is also true with a tree with n + 1 vertices.
▶ Note that when you remove a vertex (and edge) from a tree with n + 1

vertices, you have a tree with n vertices and is applicable to the IH.
▶ You then need to consider the cases you can go from a tree to n

vertices with n+1 vertices (or vice versa) and show the property is true.
Height of the tree h:

▶ IH provides the property is true for all trees with h height, you must
show it is also true with a tree with h + 1 vertices.

▶ Note that when you remove a level from a tree with height h + 1, you
have a tree with height h and is applicable to the IH.

▶ If you remove the top level, you have a two sub-trees with height h.

Prof. Adam J. Aviv (GW) Lec 20: Graphs and Trees III 14 / 40

Proof by induction on n (1)

Theorem
If a binary tree is full, except at the last level, and has n ≥ 1 vertices, the height
of the tree is ⌊log2(n)⌋.

Base Case P(1): A tree with 1 vertex has a height of 0 and log2(1) = 0

Inductive Step P(n) ⟹ P(n + 1): If a tree with n vertices where each level is
full except for the last has a height of ⌊log2(n)⌋, then a tree with n + 1 vertices
where each level is full except for the last has a height of ⌊log2(n + 1)⌋.

Consider a tree T with n + 1 vertices. If we remove the last vertex all the way to
the right on the last level, we have a tree T

′ with n vertices where everything
except the last level is full. By applying the IH to T

′, we know that that T ′ has a
height of ⌊log2(n)⌋.

What are the ways we can go from T to T
′ by adding a vertex?

Prof. Adam J. Aviv (GW) Lec 20: Graphs and Trees III 15 / 40

Proof by induction on n (2)

There are two cases: Either T ′ is a full binary tree, or T ′ is not a full binary tree.

T
′ is a full binary tree with n vertices. It has a height h = ⌊log2(n)⌋ by IH. Since

T
′ is a full tree, adding a vertex to get T increases the height by 1, so we must

show that in this case the height of T is h + 1 = ⌊log2(n + 1)⌋

Consider that in T
′ there are n = 2h+1

− 1 vertices as it is a full tree. Adding a
vertex, n + 1 = 2h+1 thus log2(n + 1) = h + 1 and ⌊log2(n + 1)⌋ = h + 1, which is
what is needed to be shown.

T
′ is not a full binary tree with n vertices with a h = ⌊log2(n)⌋. Since it is not full

tree, if we add a vertex to form T , there must be a space on the last level of T ′

for it and the height of T will not increase. We must show that in this case the
height of T is h = ⌊log2(n + 1)⌋.

Since T
′ is not a full binary tree 2h − 1 < n < 2h+1

− 1 because it is between a
height h − 1 and h. When we add a vertex 2h < n + 1 < 2h+1, or
h < log2(n + 1) < h + 1 when taking the log base 2. Thus ⌊log2(n + 1)⌋ = h as the
floor function rounds down to h.

QED

Prof. Adam J. Aviv (GW) Lec 20: Graphs and Trees III 16 / 40



Proof by induction on h (1)

Theorem

If a binary tree T with height h and ` leaf vertices, then ` ≤ 2h

(or equivalently log2 ` ≤ h).

Base Case P(0): A tree with height has a single vertex that is a leaf vertex (and
the root). So ` = 1 and log2(1) = 0 ≤ 0

(strong) Inductive Step (∀k ≤ h,P(k)) ⟹ P(h + 1): If a binary tree T with
height k ≤ h has ` ≤ 2k leaf vertices, then a binary tree T

′ with height h + 1 has
`
′
≤ 2h+1 leaf vertices.

If we remove the root vertex from T with height h + 1, we are left with
(potentially) two sub trees Tr and Tl each with a height hl ≤ h and hr ≤ h. We
need to consider the cases of sub trees Tr and Tl and how they would be
combined to prove something about T .

Prof. Adam J. Aviv (GW) Lec 20: Graphs and Trees III 17 / 40

Cases of Binary Trees
Every binary tree can be described in 5 cases (or 3 if it is a full tree)

Since the height is greater than 0 (proven in the base case), we have three cases.
Removing the root vertex gives us a left sub tree, a right sub tree, or both.

Prof. Adam J. Aviv (GW) Lec 20: Graphs and Trees III 18 / 40

Proof by induction on h (2)

We consider three cases when remove the root vertex.
Case left sub-tree: We have Tl (and an empty Tr ). The height of Tl

is h, and by the IH, the number of leaf nodes `l ≤ 2h. If we add back
in the root to get T ′, we have not added any more leaf nodes so it is
the case that ` is unchanged. Then by transitive relationship
`
′
≤ 2h ≤ 2h+1, and `

′
≤ 2h+1 which is what was to be shown.

Case right sub-tree: This is the same as the case above where Tl and
Tr are swapped. This case is covered by the one above.

Prof. Adam J. Aviv (GW) Lec 20: Graphs and Trees III 19 / 40

Proof by induction on h (3)

Case right and left sub-tree: We have a Tl and Tr but the height of each hl
and hl , where the height h + 1 of tree T

′ is h + 1 = max(hl , hr) + 1 because
if we merged the two sub-trees with a new root, the height would increase
by one more than the max height of the sub-trees. That means hl ≤ h and
hr ≤ h and thus Tl and Tr are subject to the IH.

The number of leaf vertices in the left sub-tree `l ≤ 2hl ≤ 2h and right
sub-tree `r ≤ 2hr ≤ 2h. If we merged the two trees into T

′, then the number
of leafs does not change, so `

′
= `l + `r .

As we are trying to show that `′ ≤ 2h+1 we can consider the maximum value
of `l ≤ 2h and `r = 2h. So `

′
= `l + `r = 2h+1 when `l and `r are maximal,

and so all other values off `l and `r would result in lesser values in their
sums. Thus `′ ≤ 2h+1. Which is what we need to show.

QED.

Prof. Adam J. Aviv (GW) Lec 20: Graphs and Trees III 20 / 40



Spanning Trees and Traversals

Prof. Adam J. Aviv (GW) Lec 20: Graphs and Trees III 21 / 40

Spanning Tree

Definition
A spanning tree of a graph G is a subgraph of G that contains ever vertex
of G and is a tree.

Prof. Adam J. Aviv (GW) Lec 20: Graphs and Trees III 22 / 40

Every connected graph has a spanning tree

Existence of Spanning Tree Proof (by Algorithm!).

Consider a graph G that is connected.
If it is acyclic, then it is a spanning tree.
If it has cycles/circuits, then by the Lemma (from before) we can
remove one edge from the circuit (breaking the circuit) to produce a
graph G

′ that is still connected.
▶ If G ′ is acyclic, then it is spanning tree.
▶ If G ′ has cycles, repeatedly remove an edge from each circuit until G ′′

is reached that is acyclic (which must occur). G ′′ is a spanning tree

In all cases, a spanning tree can be found.

Prof. Adam J. Aviv (GW) Lec 20: Graphs and Trees III 23 / 40

Traversal algorithms for finding a spanning tree

As a spanning tree contains all the vertexes, we sometimes define the
routine for identifying the spanning a tree as a traversal of the vertices.
The order in which the vertices are enumerated defines the traversal (and
the spanning tree),

There are two important traversal algorithms that appear frequently in
computer science, each starting from a root/start vertex.

Depth-First-Search (DFS) Traversal
▶ Explore entire sub-tree before exploring the next sub-tree

Breadth-First-Search (BFS) Traversal
▶ Explore each level of the tree completely before exploring the next level.

Prof. Adam J. Aviv (GW) Lec 20: Graphs and Trees III 24 / 40



Depth-First Search (1)

From a start/root vertex, explore the entire sub-tree of the spanning tree
first before exploring the next sub-tree

Example: DFS on the following graph
starting with A. We will break ties by
choosing edges that connect to
vertices in alphabetic order.

Prof. Adam J. Aviv (GW) Lec 20: Graphs and Trees III 25 / 40

Depth-First Search (2)

Starting at A, we could explore the
sub-tree with roots B or C : choose B
because of alphabetic ordering.

At B, we could explore the sub-tree
with roots E or F : choose E because of
alphabetic ordering.

Prof. Adam J. Aviv (GW) Lec 20: Graphs and Trees III 26 / 40

Depth-First Search (3)

At E , the choice is between F and I :
choose F .

At F , we are stuck. Both B and E
have been enumerated/visited.

This sub-tree has been full explored, so
we back up to E .

Prof. Adam J. Aviv (GW) Lec 20: Graphs and Trees III 27 / 40

Depth-First Search (4)

At I , we choose J over M. Continuing from J, we choose N. And
then are stuck again.

When we back up this time, it takes us
all the way to A.

Prof. Adam J. Aviv (GW) Lec 20: Graphs and Trees III 28 / 40



Depth-First Search (5)

From A, we explore the sub-tree with
sub-root C .

We explore the entire sub-tree, and
eventually getting stuck at 0.

When we back up this time, it takes us
all the way to A. But, there is no where
else to go. We are done!

Prof. Adam J. Aviv (GW) Lec 20: Graphs and Trees III 29 / 40

Depth-First Search (6)
We’ve embedded the traversal in the
graph, with arrows.

Following the arrows, we get the DFS
spanning tree

The order of the traversal is the order in which we visited the vertexes in
forming the tree.

A,B,E ,F , I , J,N,M,C ,D,H,G ,K , L,O

Prof. Adam J. Aviv (GW) Lec 20: Graphs and Trees III 30 / 40

Exercise

Find the DFS spanning trees starting with E and H.

What is the order of each traversal.

Prof. Adam J. Aviv (GW) Lec 20: Graphs and Trees III 31 / 40

Breadth-First Search (1)

From a start/root vertex, explore the next level of the spanning tree before
exploring the following level.

Example: BFS on the following graph
starting with A. We will break ties by
choosing edges that connect to
vertices in alphabetic order.

Prof. Adam J. Aviv (GW) Lec 20: Graphs and Trees III 32 / 40



Breadth-First Search (2)

Starting with A (at level 0), the next
level of the tree would include B and C .

At B and C , the next level (level 2),
would include E , F , G , D, and H

Ties are broken by Alphabetic order. We first visit B and then C , left to right across
level 1 in the spanning tree.

Prof. Adam J. Aviv (GW) Lec 20: Graphs and Trees III 33 / 40

Breadth-First Search (3)

Exploration F , D and H are stuck as all
children have been visited.

We continue to explore the next level
from the children of E and G .

Ties are still broken by alphabetic ordering across the level of the spanning tree.

Prof. Adam J. Aviv (GW) Lec 20: Graphs and Trees III 34 / 40

Breadth-First Search (4)

Continuing on the next level, L and O
are stuck

Since N can be reached by both M and
J, we break the tie alphabetically, and
N is a child of J.

Prof. Adam J. Aviv (GW) Lec 20: Graphs and Trees III 35 / 40

Breadth-First Search (5)

We’ve tracked the spanning tree during the traversal.

The traversal order is now a level-order traversal of the spanning tree,
where each level is enumerated left-to-right, top-to-bottom.

A,B,C ,E ,F ,D,G ,H, I , I ,K , J,M, L,O,N

Prof. Adam J. Aviv (GW) Lec 20: Graphs and Trees III 36 / 40



Shortest Path and BFS

The spanning tree for BFS is also a minimum spanning tree, which defines
the smallest distance (in terms of number of edges in the path) between
the root and other vertices.

For example, the distance between A and J is 4 “hops” as j is on level 4 of
the tree.

Why does BFS define the minimum spanning tree?

Prof. Adam J. Aviv (GW) Lec 20: Graphs and Trees III 37 / 40

Exercise

Find the BFS spanning trees starting with E and H.

What is the order of each traversal.

Prof. Adam J. Aviv (GW) Lec 20: Graphs and Trees III 38 / 40

Minimum Spanning Trees with Weighted Edges

If a graph have weighted edges, a minimum spanning tree (MST) is the
spanning tree with minimum total weight.

For example, a weighted graph with distances between cities in the USA,
the (MST) from Washington would define the shortest path via other
connecting cities.
http://hansolav.net/sql/graphs.html

Prof. Adam J. Aviv (GW) Lec 20: Graphs and Trees III 39 / 40

Solving shortest path problems

Solutions for the shortest path in a graph (or network) is extremely
important to computer science. There are number of seminal algorithms.

Dijkstra’s Algorithm
Prim’s Algorithm
Kruskal’s Algorithm

The book discusses each of these in detail, but they will likely be covered in
your Algorithms or Computer Network classes.

Prof. Adam J. Aviv (GW) Lec 20: Graphs and Trees III 40 / 40

http://hansolav.net/sql/graphs.html

	Rooted Trees
	Binary Trees
	Spanning Trees and Traversals

