
CSCI 1311: Problem Set 3

Due: 2 Mar. 2020

Instructions:
• Your submission must be typed and submitted to gradescope as a single pdf.
• You must include a cover page, that contains your name, the assignment information, the date, and

your GW email address. No answers to questions should appear on the cover page.
• Try and organize your submission such that answers to questions (or parts of questions) do not span

multiple pages. This will make it much easier to grade. Ideally, each page will start with a new
question (or part of question). See the sample for PS0 for a nice easy formatting.

• On gradescope, be sure to mark which page your answer to each question (or sub question) is located.
Doing so inaccurately could lead to issues with grading.

Question Weighting

Question: 1 2 3 Total
Points: 90 10 15 115

1. For each recurrence, solve the following recurrence relation and provide a proof (using induction) that
your solution describes the recurrence relation. That is, generate a formula for the recurrence in terms
of n alone, for the n’th term of the sequence. Then prove the statement, “if an is described by the recur-
rence relation, then an equals the solution . . . ”

Place the answer to each sub-part (a, b, c, . . .) on a single page for grading

(a) [10 points] an = 5 + an−1 where a0 = 9

(b) [10 points] an = n+ an−1 where a0 = 10

(c) [20 points] an = 2an/2 where a1 = 1. (Hint: you’ll need strong induction to prove this result)

For this question, you can assume that n is always a power of 2, that is n = 2x for some x ≥ 0.
However, if you want to better generalize the recurrence, you can define division by 2 as dn/2e
which is well defined for all n and will always reach 1 after successive divisions.

(d) [25 points] an = 3an−1 + 4an−2 where a0 = 5 and a1 = 15

(e) [25 points] an = 8an−1 − 16an−2 where a0 = 2 and a1 = 4

1

CSCI 1311 Discrete Structures I PS 3

2. [10 points] There is a close connection between recurrence relations and program analysis. For exam-
ple, if we have the following recurssion function
def foo(int n):

if n == 0: return 0 # 1 comparison + 1 return
else: return 1 + foo(n-1) # 1 addition + 1 function call + 1 return

+ num. operations in foo(n-1)

We can describe the “steps” or “work” of each function based on each operation, like a comparison,
addition, or subtraction. However, since the total steps of operation depends on a recursive call, we can
represent the calculation of the number of steps as a recurrence relation of the step function T (n).

T (n) =

{
3 + T (n− 1) if n > 0

2 if n = 0

How many steps will this function take in terms of n, that is solve the recurrence relation for T (n).
3. Let’s consider a slightly more complicated algorithm that you all may be aware of, binary search. This is

the routine for looking up a word in a (physical) dictionary, or a number in a phone book (when phone
books were a thing). In plain English and pseudo-code, the binary search routine could be described
as:

1. Open to the middle of dictionary, look at
the first word

2. If the word I’m looking for is less than the
first word,

• Search the first half of the dictionary
in step (1), treating the half of the
dictionary as if it was the whole dic-
tionary.

3. If the word I’m looking for is greater than
the first word,

• Search the second half of the dictio-
nary in step (1), treating the half of
the dictionary as if it was the whole
dictionary.

4. Continue until there is only one page left in
the dictionary, then scan that page until you
find the word.

//W is a word in the dictionary
//D is a subset of the dictionary pages
findWord(W,D){

//base case
if(D is only one page){

scan the page for the word
return if found

}

// recursive case
w := first word on the middle page of D
if(W comes before w){

d := first half of D pages , inclusive
return findWord(W, d)

}else{
d := second half of D pages , exclusive
return findWord(W, d)

}
}

(a) [5 points] Describe a recurrence relation B(n) which counts the number of steps in the binary
search routine of findword() in terms of n = |D|, the number of pages currently being searched.
When counting steps, each of the following counts as 1 step:
• any comparison (e.g., W comes before w, or D is only one page)
• any assignment (e.g., the := operator in pseudo-code)
• finding a word on a page (either the first word or later in the page)
• finding the middle page of a dictionary
• splitting a dictionary in two first-half or second-half of pages
• function calls (e.g, calling findWord() recursively)
• returning a result (e.g., all the return calls)

If it helps, you can always assume n is a power of 2 to simplify your analysis.
(b) [10 points] Solve your recurrence relation described in the previous part, that is describe the num-

ber of steps in terms of n only.

Page 2

